When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.

  3. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  4. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Thus the kilogram-force is defined as precisely 9.80665 newtons. In reality, gravitational acceleration (symbol: g) varies slightly with latitude, elevation and subsurface density; these variations are typically only a few tenths of a percent. See also Gravimetry. Engineers and scientists understand the distinctions between mass, force, and weight.

  5. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...

  6. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    For example: An acceleration of 1 g equates to a rate of change in velocity of approximately 35 km/h (22 mph) for each second that elapses. Therefore, if an automobile is capable of braking at 1 g and is traveling at 35 km/h, it can brake to a standstill in one second and the driver will experience a deceleration of 1 g. The automobile ...

  8. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  9. Kilogram - Wikipedia

    en.wikipedia.org/wiki/Kilogram

    The kilogram (also spelled kilogramme [1]) is the base unit of mass in the International System of Units (SI), having the unit symbol kg. [1] ' Kilogram' means 'one thousand grams ' [ 2 ] and is colloquially abbreviated to kilo .