Search results
Results From The WOW.Com Content Network
The geometric distribution, a discrete distribution which describes the number of attempts needed to get the first success in a series of independent Bernoulli trials, or alternatively only the number of losses before the first success (i.e. one less). The Hermite distribution; The logarithmic (series) distribution; The mixed Poisson distribution
The Poisson distribution is often used to model the number of rare event occurrences during a fixed period of time. It is characterized by a single parameter, λ, which is both the mean and variance of the distribution. The discrete Weibull distribution, on the other hand, is more flexible and can handle both over- and under-dispersion in count ...
In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random.
A discrete probability distribution is applicable to the scenarios where the set of possible outcomes is discrete (e.g. a coin toss, a roll of a die) and the probabilities are encoded by a discrete list of the probabilities of the outcomes; in this case the discrete probability distribution is known as probability mass function.
Assume is discrete random variable taking values on the non-negative integers, which is independent of the , and consider the probability generating function . If the X i {\displaystyle X_{i}} are not only independent but also identically distributed with common probability generating function G X = G X i {\displaystyle G_{X}=G_{X_{i}}} , then
In probability and statistics, the logarithmic distribution (also known as the logarithmic series distribution or the log-series distribution) is a discrete probability distribution derived from the Maclaurin series expansion
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]