Ad
related to: power factor improvement circuit diagram
Search results
Results From The WOW.Com Content Network
The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced polyphase circuit is not uniquely defined. A direct reading power factor meter can be made with a moving coil meter of the electrodynamic type, carrying two perpendicular coils on the moving part of the instrument. The field of ...
The zero power factor curve (also zero power factor characteristic, ZPF, ZPFC) of a synchronous generator is a plot of the output voltage as a function of the excitation current or field using a zero power factor (purely inductive) load that corresponds to rated voltage at rated current (1 p.u.).
Power-voltage curve (also P-V curve) describes the relationship between the active power delivered to the electrical load and the voltage at the load terminals in an electric power system under a constant power factor. [1] When plotted with power as a horizontal axis, the curve resembles a human nose, thus it is sometimes called a nose curve. [2]
η 1, s 1, PF 1, Φ 1,: Efficiency, slip, power factor, PF angle at operating current; AB: Represents rotor power input, which divided by synchronous speed equals starting torque. The circle diagram is drawn using the data obtained from no load and either short-circuit or, in case of machines, blocked rotor tests by fitting a half-circle in ...
In Electrical Engineering, a static VAR compensator (SVC) is a set of electrical devices for providing fast-acting reactive power on high-voltage electricity transmission networks. [1] [2] SVCs are part of the flexible AC transmission system [3] [4] device family, regulating voltage, power factor, harmonics and stabilizing the system. A static ...
An over-excited synchronous motor has a leading power factor. This makes it useful for power-factor correction of industrial loads. Both transformers and induction motors draw lagging (magnetising) currents from the line. On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The ...
This ability to selectively control power factor can be exploited for power factor correction of the power system to which the motor is connected. Since most power systems of any significant size have a net lagging power factor, the presence of overexcited synchronous motors moves the system's net power factor closer to unity, improving efficiency.
A simple Circuit Diagram showing two buses connected through an impedance, with a Vector Diagram representing the phase-angle between them ¯ = ¯ ¯ ¯ Apparent Power flow, and thus real and reactive power, is then given by