Search results
Results From The WOW.Com Content Network
The Standard Model can incorporate baryogenesis, though the amount of net baryons (and leptons) thus created may not be sufficient to account for the present baryon asymmetry. There is a required one excess quark per billion quark-antiquark pairs in the early universe in order to provide all the observed matter in the universe. [3]
The Affleck–Dine mechanism (AD mechanism) is a postulated mechanism for explaining baryogenesis during the primordial Universe immediately following the Big Bang.Thus, the AD mechanism may explain the asymmetry between matter and antimatter in the current Universe.
In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.
A cosmological phase transition is a physical process, whereby the overall state of matter changes together across the whole universe. The success of the Big Bang model led researchers to conjecture possible cosmological phase transitions taking place in the very early universe, at a time when it was much hotter and denser than today.
baryogenesis The process by which the class of subatomic particles known as baryons were generated in the early Universe, including the means by which baryons outnumber antibaryons. Big Bang The prevailing cosmological model for the origin of the observable universe. It depicts a starting condition of extremely high density and temperature ...
Such non-conservation of baryon number is indeed assumed to have happened in the early universe, and is known as baryogenesis. However, in some theoretical models, it is suggested that leptogenesis also occurred prior to baryogenesis; thus the term leptogenesis is often used to imply the non-conservation of leptons without corresponding non ...
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, with an uncertainty of around 21 million years at the 68% confidence level. [1]
Experiments are consistent with the number of quarks in the universe being conserved alongside the total baryon number, with antibaryons being counted as negative quantities. [11] Within the prevailing Standard Model of particle physics, the number of baryons may change in multiples of three due to the action of sphalerons , although this is ...