When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    Rotations in 4-dimensional Euclidean space. In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO (4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement. For the sake of uniqueness, rotation angles are ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.

  4. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    This matrix can be thought of as a rotation matrix in four-dimensional space, which rotates the four-vector around a particular axis. + + + =. Rotations in planes spanned by two space unit vectors appear in coordinate space as well as in physical spacetime as Euclidean rotations and are interpreted in the ordinary sense.

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO (3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [1] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation ...

  6. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is ...

  7. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex Hermitian matrices means that we can express any Hermitian matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  8. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation (mathematics) Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of ...

  9. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    Orientation (geometry) Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]