When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    From the complete oxidation of one glucose molecule to carbon dioxide and oxidation of all the reduced coenzymes. Although there is a theoretical yield of 38 ATP molecules per glucose during cellular respiration, such conditions are generally not realized because of losses such as the cost of moving pyruvate (from glycolysis), phosphate, and ...

  3. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Cells undergoing aerobic respiration produce 6 molecules of carbon dioxide, 6 molecules of water, and up to 30 molecules of ATP (adenosine triphosphate), which is directly used to produce energy, from each molecule of glucose in the presence of surplus oxygen.

  4. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Insulin resistance is a common feature of metabolic syndrome and type 2 diabetes. For this reason, gluconeogenesis is a target of therapy for type 2 diabetes, such as the antidiabetic drug metformin, which inhibits gluconeogenic glucose formation, and stimulates glucose uptake by cells. [35]

  5. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...

  6. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose (blood sugar) is distributed to cells in the tissues, where it is broken down via cellular respiration, or stored as glycogen. [3] [4] In cellular (aerobic) respiration, glucose and oxygen are metabolized to release energy, with carbon dioxide and water as endproducts. [2] [4]

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  8. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. [1] While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes).

  9. Pesticide resistance - Wikipedia

    en.wikipedia.org/wiki/Pesticide_resistance

    Glyphosate disrupts the ability of most plants to construct new proteins. Glyphosate-tolerant transgenic crops are not affected. [7] A weed family that includes waterhemp (Amaranthus rudis) has developed glyphosate-resistant strains. A 2008 to 2009 survey of 144 populations of waterhemp in 41 Missouri counties revealed glyphosate resistance in 69%.