When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two-vector - Wikipedia

    en.wikipedia.org/wiki/Two-vector

    A two-vector or bivector [1] is a tensor of type () and it is the dual of a two-form, meaning that it is a linear functional which maps two-forms to the real numbers (or more generally, to scalars). The tensor product of a pair of vectors is a two-vector. Then, any two-form can be expressed as a linear combination of tensor products of pairs of ...

  3. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    For example, the set of all vectors (x, y, z) (over real or rational numbers) satisfying the equations + + = + = is a one-dimensional subspace. More generally, that is to say that given a set of n independent functions, the dimension of the subspace in K k will be the dimension of the null set of A , the composite matrix of the n functions.

  4. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.

  5. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.

  6. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    The cross product of two vectors in dimensions with positive-definite quadratic form is closely related to their exterior product. Most instances of geometric algebras of interest have a nondegenerate quadratic form. If the quadratic form is fully degenerate, the inner product of any two vectors is always zero, and the geometric algebra is then ...

  7. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by:

  8. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...

  9. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.