Search results
Results From The WOW.Com Content Network
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
sum with circular rotation sum8 8 bits sum Internet Checksum: 16 bits sum (ones' complement) sum24 24 bits sum sum32 32 bits sum fletcher-4: 4 bits sum fletcher-8: 8 bits sum fletcher-16: 16 bits sum fletcher-32: 32 bits sum Adler-32: 32 bits sum xor8: 8 bits sum Luhn algorithm: 1 decimal digit sum Verhoeff algorithm: 1 decimal digit sum Damm ...
If the digit 9 is ignored when summing the digits, the effect is to "cast out" one more 9 to give the result 12. More generally, when casting out nines by summing digits, any set of digits which add up to 9, or a multiple of 9, can be ignored. In the number 3264, for example, the digits 3 and 6 sum to 9.
The concept of a decimal digit sum is closely related to, but not the same as, the digital root, which is the result of repeatedly applying the digit sum operation until the remaining value is only a single digit. The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value.
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.
The simplest algorithms are for addition and subtraction, where one simply adds or subtracts the digits in sequence, carrying as necessary, which yields an O(N) algorithm (see big O notation). Comparison is also very simple. Compare the high-order digits (or machine words) until a difference is found.