When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    In Newtonian mechanics, momentum (pl.: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction.

  3. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: = Similarly, the relative velocity of object B moving with velocity w, relative to object A moving with velocity v is: = Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest.

  4. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of force, or torque, is a first moment: =, or, more generally, .; Similarly, angular momentum is the 1st moment of momentum: =.Momentum itself is not a moment.; The electric dipole moment is also a 1st moment: = for two opposite point charges or () for a distributed charge with charge density ().

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    He measured momentum by the product of velocity and weight; mass is a later concept, developed by Huygens and Newton. In the swinging of a simple pendulum, Galileo says in Discourses [5] that "every momentum acquired in the descent along an arc is equal to that which causes the same moving body to ascend through the same arc." His analysis on ...

  6. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    where τ zx is the flux of x-directed momentum in the z-direction, ν is μ/ρ, the momentum diffusivity, z is the distance of transport or diffusion, ρ is the density, and μ is the dynamic viscosity. Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient.

  7. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    Hamilton's equations give the time evolution of coordinates and conjugate momenta in four first-order differential equations, ˙ = ˙ = ⁡ ˙ = ⁡ ⁡ ⁡ ˙ = Momentum ⁠ ⁠, which corresponds to the vertical component of angular momentum ⁠ = ⁡ ⁡ ˙ ⁠, is a constant of motion. That is a consequence of the rotational symmetry of the ...

  8. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Angular velocity: the angular velocity ω is the rate at which the angular position θ changes with respect to time t: = The angular velocity is represented in Figure 1 by a vector Ω pointing along the axis of rotation with magnitude ω and sense determined by the direction of rotation as given by the right-hand rule.

  9. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.