Ad
related to: back titration calculation example questionsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
An example of back titration, the Volhard method, named after Jacob Volhard, involves the addition of excess silver nitrate to the analyte; the silver chloride is filtered, and the remaining silver nitrate is titrated against ammonium thiocyanate, [1] with ferric ammonium sulfate as an indicator which forms blood-red [Fe(OH 2) 5 (SCN)] 2+ at the end point:
Back titration is a titration done in reverse; instead of titrating the original sample, a known excess of standard reagent is added to the solution, and the excess is titrated. A back titration is useful if the endpoint of the reverse titration is easier to identify than the endpoint of the normal titration, as with precipitation reactions
Fig. 15. Titration plot of back-titration of excess EDTA with Cu(II) in NH 3 /NH 4 Cl buffered solution. Direct EDTA titrations with metal ions are possible when reaction kinetics are fast, for example zinc, copper, calcium and magnesium. However, with slower reaction kinetics such as those exhibited by cobalt and nickel, back-titrations are used.
The sample solution is then distilled with a small amount of sodium hydroxide (NaOH). [3] NaOH can also be added with a dropping funnel. [4] NaOH reacts the ammonium (NH 4 +) to ammonia (NH 3), which boils off the sample solution. Ammonia bubbles through the standard acid solution and reacts back to ammonium salts with the weak or strong acid. [3]
Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point. Note that iodometry involves indirect titration of iodine liberated by reaction with the analyte, whereas iodimetry involves direct titration using iodine as ...
The volumetric titration is based on the same principles as the coulometric titration, except that the anode solution above now is used as the titrant solution. The titrant consists of an alcohol (ROH), base (B), SO 2 and a known concentration of I 2. Pyridine has been used as the base in this case. One mole of I 2 is consumed for each mole of ...
The interplay of the intrinsic pK a values of a system with the electrostatic interaction energies between titratable groups can produce quite spectacular effects such as non-Henderson–Hasselbalch titration curves and even back-titration effects. [6] The image on the right shows a theoretical system consisting of three acidic residues.
For example, the acid may be acetic acid and the salt may be sodium acetate. The Henderson–Hasselbalch equation relates the pH of a solution containing a mixture of the two components to the acid dissociation constant, K a of the acid, and the concentrations of the species in solution. [6]