Search results
Results From The WOW.Com Content Network
Examples of structures with two operations that are each distributive over the other are Boolean algebras such as the algebra of sets or the switching algebra. Multiplying sums can be put into words as follows: When a sum is multiplied by a sum, multiply each summand of a sum with each summand of the other sum (keeping track of signs) then add ...
In the second step, the distributive law is used to simplify each of the two terms. Note that this process involves a total of three applications of the distributive property. In contrast to the FOIL method, the method using distributivity can be applied easily to products with more terms such as trinomials and higher.
The difference of two squares can also be illustrated geometrically as the difference of two square areas in a plane.In the diagram, the shaded part represents the difference between the areas of the two squares, i.e. .
Parity is the property of an integer of whether it is even or odd; For more examples, see Category:Algebraic properties of elements. Of operations: associative property; commutative property of binary operations between real and complex numbers; distributive property; For more examples, see Category:Properties of binary operations.
For example, an element of a distributive lattice is meet-prime if and only if it is meet-irreducible, though the latter is in general a weaker property. By duality, the same is true for join-prime and join-irreducible elements. [7] If a lattice is distributive, its covering relation forms a median graph. [8]
The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...
This example may be expanded for showing that, if A is a matrix with entries in a field F, then = for every matrix B with entries in F, if and only if = where , and I is the identity matrix.
Thus, the Dedekind numbers count the elements in free distributive lattices. [5] The Dedekind numbers also count one more than the number of abstract simplicial complexes on a set with n elements, families of sets with the property that any non-empty subset of a set in the family also belongs to the family. Any antichain (except {Ø ...