When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carbon-14 - Wikipedia

    en.wikipedia.org/wiki/Carbon-14

    Carbon-14, C-14, 14 C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples.

  3. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Examples include carbon-14, nitrogen-15, and oxygen-16 in the table above. Isobars are nuclides with the same number of nucleons (i.e. mass number) but different numbers of protons and neutrons. Isobars neighbor each other diagonally from lower-left to upper-right. Examples include carbon-14, nitrogen-14, and oxygen-14 in the table above.

  4. Isotopes of carbon - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_carbon

    Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio

  5. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.

  6. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    For example, uranium-238 usually decays by alpha decay, where the nucleus loses two neutrons and two protons in the form of an alpha particle. Thus the atomic number and the number of neutrons each decrease by 2 ( Z : 92 → 90, N : 146 → 144), so that the mass number decreases by 4 ( A = 238 → 234); the result is an atom of thorium-234 and ...

  7. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    This diagram shows the half-life (T ½) of various isotopes with Z protons and neutron number N. The neutron number (symbol N ) is the number of neutrons in a nuclide . Atomic number (proton number) plus neutron number equals mass number : Z + N = A .

  8. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    According to Byrne, [3] stable nuclides are defined as those having a half-life greater than 10 18 years, and there are many combinations of protons and neutrons that form nuclides that are unstable. A common example of an unstable nuclide is carbon-14 that decays by beta decay into nitrogen-14 with a half-life of about 5,730 years: 14 6 C → ...

  9. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    The neutron–proton ratio (N/Z ratio or nuclear ratio) of an atomic nucleus is the ratio of its number of neutrons to its number of protons. Among stable nuclei and naturally occurring nuclei, this ratio generally increases with increasing atomic number. [1]