When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex": =, where B 1 and B 2 are the base and top areas, and h 1 and h 2 are the perpendicular heights from the apex to the base and top planes. Considering that

  3. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The volume of a pyramid is the one-third product of the base's area and the height. The pyramid height is defined as the length of the line segment between the apex and its orthogonal projection on the base. Given that is the base's area and is the height of a pyramid, the volume of a pyramid is: [25] =.

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space

  5. Solid geometry - Wikipedia

    en.wikipedia.org/wiki/Solid_geometry

    Pyramid: A polyhedron comprising an n-sided polygonal base and a vertex point square pyramid: Prism: A polyhedron comprising an n-sided polygonal base, a second base which is a translated copy (rigidly moved without rotation) of the first, and n other faces (necessarily all parallelograms) joining corresponding sides of the two bases hexagonal ...

  6. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron {p,q} is a regular q-gon. The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces. This is equal to the angular ...

  7. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  8. Square pyramid - Wikipedia

    en.wikipedia.org/wiki/Square_pyramid

    In general, the volume of a pyramid is equal to one-third of the area of its base multiplied by its height. [8] Expressed in a formula for a square pyramid, this is: [9] =. Many mathematicians have discovered the formula for calculating the volume of a square pyramid in ancient times.

  9. Moscow Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Moscow_Mathematical_Papyrus

    The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]