When.com Web Search

  1. Ad

    related to: examples of inverse trigonometric functions derivatives

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/.../Inverse_trigonometric_functions

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length x , {\displaystyle x,} then applying the Pythagorean theorem and definitions of the trigonometric ratios.

  3. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ ( a ) = cos( a ), meaning that the rate of change of sin( x ) at a particular angle x = a is given ...

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  5. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.

  6. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  7. List of integrals of inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives. There are three common notations for inverse trigonometric ...

  8. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) . {\displaystyle \arctan(y,x).}

  9. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Generally, if the function ⁡ is any trigonometric function, and ⁡ is its derivative, ∫ a cos ⁡ n x d x = a n sin ⁡ n x + C {\displaystyle \int a\cos nx\,dx={\frac {a}{n}}\sin nx+C} In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration .