When.com Web Search

  1. Ad

    related to: similarity of triangles ratio

Search results

  1. Results From The WOW.Com Content Network
  2. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...

  3. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    It is equivalent to the theorem about ratios in similar triangles. It is traditionally attributed to Greek mathematician Thales . It was known to the ancient Babylonians and Egyptians , although its first known proof appears in Euclid 's Elements .

  4. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Proof using similar triangles. This proof is based on the proportionality of the sides of three similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles. Let ABC represent a right triangle, with the right angle located at C, as shown on the ...

  5. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    Two triangles are said to be similar, if every angle of one triangle has the same measure as the corresponding angle in the other triangle. The corresponding sides of similar triangles have lengths that are in the same proportion, and this property is also sufficient to establish similarity. [39] Some basic theorems about similar triangles are:

  6. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Dissecting the right triangle along its altitude h yields two similar triangles, which can be augmented and arranged in two alternative ways into a larger right triangle with perpendicular sides of lengths p + h and q + h. One such arrangement requires a square of area h 2 to complete it, the other a rectangle of area pq. Since both ...

  7. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    Hence, the ratio (quotient) of two line segments remains unchanged . In case of the calculation is analogous but a little extensive. Consequences: A triangle is mapped on a similar one. The homothetic image of a circle is a circle. The image of an ellipse is a similar one. i.e. the ratio of the two axes is unchanged.

  8. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  9. Spiral similarity - Wikipedia

    en.wikipedia.org/wiki/Spiral_Similarity

    A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.