Ad
related to: recurring number to fraction
Search results
Results From The WOW.Com Content Network
Conversely the period of the repeating decimal of a fraction c / d will be (at most) the smallest number n such that 10 n − 1 is divisible by d. For example, the fraction 2 / 7 has d = 7, and the smallest k that makes 10 k − 1 divisible by 7 is k = 6, because 999999 = 7 × 142857.
A vinculum can indicate the repetend of a repeating decimal value: 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571... A vinculum can indicate the complex conjugate of a complex number :
The continued fraction representation for a real number is finite if and only if it is a rational number. In contrast, the decimal representation of a rational number may be finite, for example 137 / 1600 = 0.085625, or infinite with a repeating cycle, for example 4 / 27 = 0.148148148148...
Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...
In 1802, H. Goodwyn published an observation on the appearance of 9s in the repeating-decimal representations of fractions whose denominators are certain prime numbers. [46] Examples include: 1 7 {\textstyle {\frac {1}{7}}} = 0. 142857 and 142 + 857 = 999 .
By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.
Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...
Cyclic numbers are related to the recurring digital representations of unit fractions. A cyclic number of length L is the digital representation of 1/(L + 1). Conversely, if the digital period of 1/p (where p is prime) is p − 1, then the digits represent a cyclic number. For example: 1/7 = 0.142857 142857...