When.com Web Search

  1. Ads

    related to: 3d geometry shortest distance formula

Search results

  1. Results From The WOW.Com Content Network
  2. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between ...

  4. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    Minkowski distance (L p distance), a generalization that unifies Euclidean distance, taxicab distance, and Chebyshev distance. For points on surfaces in three dimensions, the Euclidean distance should be distinguished from the geodesic distance, the length of a shortest curve that belongs to the surface.

  5. Taxicab geometry - Wikipedia

    en.wikipedia.org/wiki/Taxicab_geometry

    In taxicab geometry, the lengths of the red, blue, green, and yellow paths all equal 12, the taxicab distance between the opposite corners, and all four paths are shortest paths. Instead, in Euclidean geometry, the red, blue, and yellow paths still have length 12 but the green path is the unique shortest path, with length equal to the Euclidean ...

  6. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression a x + b y + c z {\displaystyle ax+by+cz} in the definition of a plane is a dot product ( a , b , c ) ⋅ ( x , y , z ) {\displaystyle (a,b,c)\cdot (x,y,z)} , and the expression a 2 + b 2 + c 2 {\displaystyle a^{2 ...

  7. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    There are several ways of defining geodesics (Hilbert & Cohn-Vossen 1952, pp. 220–221).A simple definition is as the shortest path between two points on a surface. However, it is frequently more useful to define them as paths with zero geodesic curvature—i.e., the analogue of straight lines on a curved su

  8. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  9. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...