Search results
Results From The WOW.Com Content Network
Sometimes, if each function in a normal family F satisfies a particular property (e.g. is holomorphic), then the property also holds for each limit point of the set F. More formally, let X and Y be topological spaces. The set of continuous functions : has a natural topology called the compact-open topology. A normal family is a pre-compact ...
Let X and Y be two metric spaces, and F a family of functions from X to Y.We shall denote by d the respective metrics of these spaces.. The family F is equicontinuous at a point x 0 ∈ X if for every ε > 0, there exists a δ > 0 such that d(ƒ(x 0), ƒ(x)) < ε for all ƒ ∈ F and all x such that d(x 0, x) < δ.
In complex analysis, an area of mathematics, Montel's theorem refers to one of two theorems about families of holomorphic functions. These are named after French mathematician Paul Montel, and give conditions under which a family of holomorphic functions is normal.
The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.
In mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters. [1] Common examples are parametrized (families of) functions, probability distributions, curves, shapes, etc. [citation needed]
More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set I {\displaystyle I} , known as the index set, to F {\displaystyle F} , in which case the sets of the family are indexed by members of I {\displaystyle I} . [ 1 ]