Search results
Results From The WOW.Com Content Network
For r = 3 and s = 2, the formula tells us that any permutation of three numbers has an increasing subsequence of length three or a decreasing subsequence of length two. Among the six permutations of the numbers 1,2,3: 1,2,3 has an increasing subsequence consisting of all three numbers; 1,3,2 has a decreasing subsequence 3,2
In calculus, a function defined on a subset of the real numbers with real values is called monotonic if it is either entirely non-decreasing, or entirely non-increasing. [2] That is, as per Fig. 1, a function that increases monotonically does not exclusively have to increase, it simply must not decrease.
For a monotone function , let mean that is monotonically non-decreasing and let mean that is monotonically non-increasing. Let f : [ a , b ] → R {\displaystyle f:[a,b]\to \mathbb {R} } is a monotone function and let D {\displaystyle D} denote the set of all points d ∈ [ a , b ] {\displaystyle d\in [a,b]} in the domain of f {\displaystyle f ...
In the case of a completely monotonic function, the function and its derivatives must be alternately non-negative and non-positive in its domain of definition which would imply that function and its derivatives are alternately monotonically increasing and monotonically decreasing functions.
The theorem states that if you have an infinite matrix of non-negative real numbers , such that the rows are weakly increasing and each is bounded , where the bounds are summable < then, for each column, the non decreasing column sums , are bounded hence convergent, and the limit of the column sums is equal to the sum of the "limit column ...
The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield. Near a strict local maximum in the interior of the domain of a function, the function must be concave; as a partial converse, if the derivative of a strictly concave ...
[2] This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous.
If a sequence is either increasing or decreasing it is called a monotone sequence. This is a special case of the more general notion of a monotonic function. The terms nondecreasing and nonincreasing are often used in place of increasing and decreasing in order to avoid any possible confusion with strictly increasing and strictly decreasing ...