Search results
Results From The WOW.Com Content Network
In mathematics, a pairing function is a process to uniquely encode two natural numbers into a single natural number. Any pairing function can be used in set theory to prove that integers and rational numbers have the same cardinality as natural numbers. [1]
The technique for the construction of integers presented in the previous section corresponds to the particular case where there is a single basic operation pair (,) that takes as arguments two natural numbers and , and returns an integer (equal to ).
For example, the integers 6, 10, 15 are coprime because 1 is the only positive integer that divides all of them. If every pair in a set of integers is coprime, then the set is said to be pairwise coprime (or pairwise relatively prime, mutually coprime or mutually relatively prime). Pairwise coprimality is a stronger condition than setwise ...
are three integers that form a Pythagorean triple, which is primitive if and only if m and n are coprime. Conversely, every primitive Pythagorean triple arises (after the exchange of a and b, if a is even) from a unique pair m > n > 0 of coprime odd integers.
In combinatorial mathematics, a Langford pairing, also called a Langford sequence, is a permutation of the sequence of 2n numbers 1, 1, 2, 2, ..., n, n in which the two 1s are one unit apart, the two 2s are two units apart, and more generally the two copies of each number k are k units apart. Langford pairings are named after C. Dudley Langford ...
Fractions: A representation of a non-integer as a ratio of two integers. These include improper fractions as well as mixed numbers . Continued fraction : An expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of ...
Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as the last digit of any even number is 0, 2, 4, 6, or 8.
Let (m, n) be a pair of amicable numbers with m < n, and write m = gM and n = gN where g is the greatest common divisor of m and n. If M and N are both coprime to g and square free then the pair (m, n) is said to be regular (sequence A215491 in the OEIS); otherwise, it is called irregular or exotic.