Search results
Results From The WOW.Com Content Network
In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio [1] in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma.
The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles , e.g. in electron optics and ion optics .
A side-effect of these experiments was a re-examination of the original Eötvös data, including detailed studies of the local stratigraphy, the physical layout of the Physics Institute (which Eötvös had personally designed), and even the weather and other effects. The experiment is therefore well recorded.
The gyromagnetic ratio for a free electron has been experimentally determined as γ e = 1.760 859 644 (11) × 10 11 s −1 ⋅T −1. [1] This value is very close to that used for Fe-based magnetic materials. Taking the derivative of the gyromagnetic ratio with respect to time yields the relationship,
energy efficiency, economics (ratio of energy input to kinetic motion) Damping ratio = mechanics, electrical engineering (the level of damping in a system) Decibel: dB: acoustics, electronics, control theory (ratio of two intensities or powers of a wave) Elasticity : E
It is the ratio of the magnetic moment (or, equivalently, the gyromagnetic ratio) of a particle to that expected of a classical particle of the same charge and angular momentum. In nuclear physics, the nuclear magneton replaces the classically expected magnetic moment (or gyromagnetic ratio) in the definition. The two definitions coincide for ...
In physics, the coefficient of restitution (COR, also denoted by e), can be thought of as a measure of the elasticity of a collision between two bodies. It is a dimensionless parameter defined as the ratio of the relative velocity of separation after a two-body collision to the relative velocity of approach before collision.
This ratio of densities, and other ratios (using four fundamental constants: speed of light in vacuum c, Newtonian constant of gravity G, reduced Planck constant ℏ, and Hubble constant H) computes to an exact number, 32.8·10 120. This provides evidence of the Dirac large numbers hypothesis by connecting the macro-world and the micro-world.