Search results
Results From The WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.
The Gompertz curve or Gompertz function is a type of mathematical model for a time series, named after Benjamin Gompertz (1779–1865). It is a sigmoid function which describes growth as being slowest at the start and end of a given time period.
The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.
AP Calculus AB covers basic introductions to limits, ... Differential equations for logistic growth; Using partial fractions to integrate rational functions [12 ...
Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics
Verhulst developed the logistic function in a series of three papers between 1838 and 1847, based on research on modeling population growth that he conducted in the mid 1830s, under the guidance of Adolphe Quetelet; see Logistic function § History for details. [1] Verhulst published in Verhulst (1838) the equation:
As mentioned above, the logistic map can be used as a model to consider the fluctuation of population size. In this case, the variable x of the logistic map is the number of individuals of an organism divided by the maximum population size, so the possible values of x are limited to 0 ≤ x ≤ 1.