When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [1] [2] [3] The Doppler effect is named after the physicist Christian Doppler, who described the phenomenon in 1842.

  3. Wave shoaling - Wikipedia

    en.wikipedia.org/wiki/Wave_shoaling

    The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T, with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...

  4. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light).The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift.

  5. Aliasing - Wikipedia

    en.wikipedia.org/wiki/Aliasing

    A graph of amplitude vs frequency (not time) for a single sinusoid at frequency 0.6 f s and some of its aliases at 0.4 f s, 1.4 f s, and 1.6 f s would look like the 4 black dots in Fig.3. The red lines depict the paths ( loci ) of the 4 dots if we were to adjust the frequency and amplitude of the sinusoid along the solid red segment (between f ...

  6. Hubble's law - Wikipedia

    en.wikipedia.org/wiki/Hubble's_law

    In 1922, Alexander Friedmann derived his Friedmann equations from Einstein field equations, showing that the universe might expand at a rate calculable by the equations. [24] The parameter used by Friedmann is known today as the scale factor and can be considered as a scale invariant form of the proportionality constant of Hubble's law.

  7. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The dependence on frequency and pressure are normally insignificant in practical applications. In dry air, the speed of sound increases by about 0.1 m/s as the frequency rises from 10 Hz to 100 Hz. For audible frequencies above 100 Hz it is relatively constant. Standard values of the speed of sound are quoted in the limit of low frequencies ...

  8. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Additionally, using equation f = c/λ, = where E is the photon's energy; λ is the photon's wavelength; c is the speed of light in vacuum; h is the Planck constant; The photon energy at 1 Hz is equal to 6.626 070 15 × 10 −34 J, which is equal to 4.135 667 697 × 10 −15 eV.

  9. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    = is the escape velocity, and β e = v e / c {\displaystyle \beta _{e}=v_{e}/c} is the escape velocity, expressed as a fraction of the speed of light c. To illustrate then, without accounting for the effects of rotation, proximity to Earth's gravitational well will cause a clock on the planet's surface to accumulate around 0.0219 fewer seconds ...