Search results
Results From The WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Before C99, the C language allowed other choices.) Perl, Python (only modern versions) choose the remainder with the same sign as the divisor d. [6] Scheme offer two functions, remainder and modulo – Ada and PL/I have mod and rem, while Fortran has mod and modulo; in each case, the former agrees in sign with the dividend, and the latter with ...
By definition, a and b can be written as multiples of c : a = mc and b = nc, where m and n are natural numbers. Therefore, c divides the initial remainder r 0, since r 0 = a − q 0 b = mc − q 0 nc = (m − q 0 n)c. An analogous argument shows that c also divides the subsequent remainders r 1, r 2, etc.
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m .
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
Note: The reason why this works is that if we have: a+b=c and b is a multiple of any given number n, then a and c will necessarily produce the same remainder when divided by n. In other words, in 2 + 7 = 9, 7 is divisible by 7. So 2 and 9 must have the same remainder when divided by 7. The remainder is 2.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.