Ads
related to: pid controller for dummies pdf book list template word document examples images
Search results
Results From The WOW.Com Content Network
A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...
In cybernetics and control theory, a setpoint (SP; [1] also set point) is the desired or target value for an essential variable, or process value (PV) of a control system, [2] which may differ from the actual measured value of the variable.
Classical control theory uses the Laplace transform to model the systems and signals. The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable.
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. The idea can be illustrated as follows.
Process control instrumentation and designation (names, numbers, unique tag identifiers), including: Valves and their types and identifications (e.g. isolation, shutoff, relief and safety valves, valve interlocks) Control inputs and outputs (sensors and final elements, interlocks)
PID controller (proportional-integral-derivative controller), a control concept used in automation; Piping and instrumentation diagram (P&ID), a diagram in the process industry which shows the piping of the process flow etc. Principal ideal domain, an algebraic structure; Process identifier, a number used by many operating systems to identify a ...
A control loop is the fundamental building block of control systems in general and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP).
The PID loop in this situation uses the feedback information to change the combined output to reduce the remaining difference between the process setpoint and the feedback value. Working together, the combined open-loop feed-forward controller and closed-loop PID controller can provide a more responsive control system in some situations.