When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital speed - Wikipedia

    en.wikipedia.org/wiki/Orbital_speed

    Halley's Comet on an eccentric orbit that reaches beyond Neptune will be moving 54.6 km/s when 0.586 AU (87,700 thousand km) from the Sun, 41.5 km/s when 1 AU from the Sun (passing Earth's orbit), and roughly 1 km/s at aphelion 35 AU (5.2 billion km) from the Sun. [7] Objects passing Earth's orbit going faster than 42.1 km/s have achieved ...

  3. Low Earth orbit - Wikipedia

    en.wikipedia.org/wiki/Low_Earth_orbit

    The mean orbital velocity needed to maintain a stable low Earth orbit is about 7.8 km/s (4.8 mi/s), which translates to 28,000 km/h (17,000 mph). However, this depends on the exact altitude of the orbit.

  4. Orders of magnitude (speed) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(speed)

    1 km/h. 0.44704: 1.609344: 1: 1.4912 × 10 ... 320 km/h or 200 mph is a parameter sometimes used in defining a supercar. ... Mean orbital velocity of the Moon around ...

  5. HD 80606 b - Wikipedia

    en.wikipedia.org/wiki/HD_80606_b

    The planet has wild variations in its weather as it orbits its parent star. Computer models predict the planet heats up 555 K (1,000 °F) in just a matter of hours, triggering "shock wave storms" that ripple out from the point facing its star, with winds that move at around 5 kilometres per second (3.1 mi/s; 11,000 mph). [12] [14]

  6. Orbital velocity - Wikipedia

    en.wikipedia.org/wiki/Orbital_velocity

    Orbital velocity may refer to the following: The orbital angular velocity; The orbital speed of a revolving body in a gravitational field. The velocity of particles ...

  7. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    Final v s, θ s and r must match the requirements of the target orbit as determined by orbital mechanics (see Orbital flight, above), where final v s is usually the required periapsis (or circular) velocity, and final θ s is 90 degrees. A powered descent analysis would use the same procedure, with reverse boundary conditions.

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    To escape the Solar System from a location at a distance from the Sun equal to the distance Sun–Earth, but not close to the Earth, requires around 42 km/s velocity, but there will be "partial credit" for the Earth's orbital velocity for spacecraft launched from Earth, if their further acceleration (due to the propulsion system) carries them ...

  9. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.