Search results
Results From The WOW.Com Content Network
An axon can divide into many branches called telodendria (Greek for 'end of tree'). At the end of each telodendron is an axon terminal (also called a terminal bouton or synaptic bouton, or end-foot). [20] Axon terminals contain synaptic vesicles that store the neurotransmitter for release at the synapse. This makes multiple synaptic connections ...
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
The action potential, which typically starts at the axon hillock, propagates down the length of the axon to the axon terminals where it triggers the release of neurotransmitters, but also backwards into the dendrite (retrograde propagation), providing an important signal for spike-timing-dependent plasticity (STDP). [4]
The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. [ 1 ] In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.
The impulse travels down the axon in one direction only, to the axon terminal where it signals other neurons. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize.
An axo-axonic synapse is a type of synapse, formed by one neuron projecting its axon terminals onto another neuron's axon. [1]Axo-axonic synapses have been found and described more recently than the other more familiar types of synapses, such as axo-dendritic synapses and axo-somatic synapses.
The brain plays a big part in the aging process, and scientists think they’ve pinpointed the specific cells that control it.. In a study of mice, researchers at the Allen Institute identified ...
Fig. 1. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact ...