Search results
Results From The WOW.Com Content Network
Shannon capacity of a graph. If G is an undirected graph, it can be used to define a communications channel in which the symbols are the graph vertices, and two ...
The Shannon capacity of a graph G is bounded from below by α(G), and from above by ϑ(G). [5] In some cases, ϑ(G) and the Shannon capacity coincide; for instance, for the graph of a pentagon, both are equal to √ 5. However, there exist other graphs for which the Shannon capacity and the Lovász number differ. [6]
The channel capacity can be calculated from the physical properties of a channel; for a band-limited channel with Gaussian noise, using the Shannon–Hartley theorem. Simple schemes such as "send the message 3 times and use a best 2 out of 3 voting scheme if the copies differ" are inefficient error-correction methods, unable to asymptotically ...
It connects Hartley's result with Shannon's channel capacity theorem in a form that is equivalent to specifying the M in Hartley's line rate formula in terms of a signal-to-noise ratio, but achieving reliability through error-correction coding rather than through reliably distinguishable pulse levels.
the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; as well as; the bit—a new way of seeing the most fundamental unit of information.
Shannon's definition of entropy, when applied to an information source, can determine the minimum channel capacity required to reliably transmit the source as encoded binary digits. Shannon's entropy measures the information contained in a message as opposed to the portion of the message that is determined (or predictable).
Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:
The Shannon–Hartley theorem says that the limit of reliable information rate (data rate exclusive of error-correcting codes) of a channel depends on bandwidth and signal-to-noise ratio according to: < (+) where