Search results
Results From The WOW.Com Content Network
The capital asset pricing model uses linear regression as well as the concept of beta for analyzing and quantifying the systematic risk of an investment. This comes directly from the beta coefficient of the linear regression model that relates the return on the investment to the return on all risky assets.
Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...
In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...
This software provides a comprehensive set of capabilities including frequencies, cross-tabs comparison of means (t-tests and one-way ANOVA), linear regression, logistic regression, reliability (Cronbach's alpha, not failure or Weibull), and re-ordering data, non-parametric tests, factor analysis, cluster analysis, principal components analysis, chi-square analysis and more.
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
In statistics, a proper linear model is a linear regression model in which the weights given to the predictor variables are chosen in such a way as to optimize the relationship between the prediction and the criterion.
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).