Search results
Results From The WOW.Com Content Network
Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions , to describe the sizes or locations of objects in the everyday world.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO(4). The name comes from the fact that it is the special orthogonal group of order 4. In this article rotation means rotational displacement .
The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...
In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...
a 2-sphere is an ordinary -dimensional sphere in -dimensional Euclidean space, and is the boundary of an ordinary ball ( -ball). a 3 -sphere is a 3 {\displaystyle 3} -dimensional sphere in 4 {\displaystyle 4} -dimensional Euclidean space.
In 4-space n = 4, the four eigenvalues are of the form e ±iθ, e ±iφ. The null rotation has θ = φ = 0. The case of θ = 0, φ ≠ 0 is called a simple rotation, with two unit eigenvalues forming an axis plane, and a two-dimensional rotation orthogonal to the axis plane. Otherwise, there is no axis plane.
A generalization of a rotation applies in special relativity, where it can be considered to operate on a four-dimensional space, spacetime, spanned by three space dimensions and one of time. In special relativity, this space is called Minkowski space, and the four-dimensional rotations, called Lorentz transformations, have a physical ...