When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.

  3. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    Law of cosines – Property of all triangles on a Euclidean plane; Mazur–Ulam theorem – Surjective isometries are affine mappings; Minkowski distance – Mathematical metric in normed vector space; Parallelogram law – Sum of the squares of all 4 sides of a parallelogram equals that of the 2 diagonals

  4. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.

  5. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    Addition and multiplication are commutative in most number systems, and, in particular, between natural numbers, integers, rational numbers, real numbers and complex numbers. This is also true in every field. Addition is commutative in every vector space and in every algebra. Union and intersection are commutative operations on sets.

  8. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w . In mathematics and physics , a vector space (also called a linear space) is a set whose elements, often called vectors , can be added together and multiplied ...

  9. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2 w . In mathematics and physics , a vector space (also called a linear space ) is a set whose elements, often called vectors , can be added together and multiplied ...