Search results
Results From The WOW.Com Content Network
The strength of a vortex line is constant along its length. Helmholtz's second theorem A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path. Helmholtz's third theorem A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows.
A plughole vortex. The fluid motion in a vortex creates a dynamic pressure (in addition to any hydrostatic pressure) that is lowest in the core region, closest to the axis, and increases as one moves away from it, in accordance with Bernoulli's principle. One can say that it is the gradient of this pressure that forces the fluid to follow a ...
A vortex tube is the surface in the continuum formed by all vortex lines passing through a given (reducible) closed curve in the continuum. The 'strength' of a vortex tube (also called vortex flux ) [ 10 ] is the integral of the vorticity across a cross-section of the tube, and is the same everywhere along the tube (because vorticity has zero ...
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of water and other liquids in motion).
A vortex street around a cylinder. This can occur around cylinders and spheres, for any fluid, cylinder size and fluid speed, provided that the flow has a Reynolds number in the range ~40 to ~1000. [1] In fluid dynamics, an eddy is the swirling of a fluid and the reverse current created when the fluid is in a turbulent flow regime. [2]
Similarly, when a vortex of air is broadened, it in turn spins more slowly. When the air converges horizontally, the air speed increases to maintain potential vorticity, and the vertical extent increases to conserve mass. On the other hand, divergence causes the vortex to spread, slowing down the rate of spin.
The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free) vortex. However, in a potential vortex, the velocity becomes infinite at the vortex center.