Search results
Results From The WOW.Com Content Network
An older range extender will not be able to repeat the signal of a newer generation router. Security encryption compatibility also matters and must be at the same level of compatibility for the signal to be extended. For example, an older range extender that supports WEP and WPA will not be able to boost a WPA2-encrypted signal from a router.
WEP used a 64-bit or 128-bit encryption key that must be manually entered on wireless access points and devices and does not change. TKIP employs a per-packet key, meaning that it dynamically generates a new 128-bit key for each packet and thus prevents the types of attacks that compromised WEP. [4]
Some devices with dual-band wireless network connectivity do not allow the user to select the 2.4 GHz or 5 GHz band (or even a particular radio or SSID) when using Wi-Fi Protected Setup, unless the wireless access point has separate WPS button for each band or radio; however, a number of later wireless routers with multiple frequency bands and ...
Once the restrictions were lifted, manufacturers of access points implemented an extended 128-bit WEP protocol using a 104-bit key size (WEP-104). A 64-bit WEP key is usually entered as a string of 10 hexadecimal (base 16) characters (0–9 and A–F). Each character represents 4 bits, 10 digits of 4 bits each gives 40 bits; adding the 24-bit ...
WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; [3] some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP.
All base stations in a wireless distribution system must be configured to use the same radio channel, method of encryption (none, WEP, WPA or WPA2) and the same encryption keys. They may be configured to different service set identifiers (SSIDs). WDS also requires every base station to be configured to forward to others in the system.
A HAIPE is an IP encryption device, looking up the destination IP address of a packet in its internal Security Association Database (SAD) and picking the encrypted tunnel based on the appropriate entry. For new communications, HAIPEs use the internal Security Policy Database (SPD) to set up new tunnels with the appropriate algorithms and settings.
The packet number is a 48-bit number stored across 6 octets. The PN codes are the first two and last four octets of the CCMP header and are incremented for each subsequent packet. Between the PN codes are a reserved octet and a Key ID octet. The Key ID octet contains the Ext IV (bit 5), Key ID (bits 6–7), and a reserved subfield (bits 0–4).