When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Compton scattering - Wikipedia

    en.wikipedia.org/wiki/Compton_scattering

    Compton scattering (or the Compton effect) is the quantum theory of high frequency photons scattering following an interaction with a charged particle, usually an electron. Specifically, when the photon hits electrons, it releases loosely bound electrons from the outer valence shells of atoms or molecules.

  3. Non-linear inverse Compton scattering - Wikipedia

    en.wikipedia.org/wiki/Non-linear_inverse_Compton...

    Picture of non-linear inverse Compton scattering. Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle, in many cases an electron. [1]

  4. Compton edge - Wikipedia

    en.wikipedia.org/wiki/Compton_edge

    In gamma-ray spectrometry, the Compton edge is a feature of the measured gamma-ray energy spectrum that results from Compton scattering in the detector material. It corresponds to the highest energy that can be transferred to a weakly bound electron of a detector's atom by an incident photon in a single scattering process, and manifests itself as a ridge in the measured gamma-ray energy spectrum.

  5. Klein–Nishina formula - Wikipedia

    en.wikipedia.org/wiki/Klein–Nishina_formula

    The formula describes both the Thomson scattering of low energy photons (e.g. visible light) and the Compton scattering of high energy photons (e.g. x-rays and gamma-rays), showing that the total cross section and expected deflection angle decrease with increasing photon energy.

  6. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering).

  7. Bothe–Geiger coincidence experiment - Wikipedia

    en.wikipedia.org/wiki/Bothe–Geiger_coincidence...

    The experiment explored x-ray scattering from electrons to determine the nature of the conservation of energy at microscopic scales, which was contested at that time. The experiment confirmed existence of photons, the conservation of energy and the Compton scattering theory.

  8. Arthur Compton - Wikipedia

    en.wikipedia.org/wiki/Arthur_Compton

    Arthur Holly Compton (September 10, 1892 – March 15, 1962) was an American physicist who shared the 1927 Nobel Prize in Physics with C. T. R. Wilson for his discovery of the Compton effect, which demonstrated the particle nature of electromagnetic radiation.

  9. Scattering - Wikipedia

    en.wikipedia.org/wiki/Scattering

    Inelastic scattering includes Brillouin scattering, Raman scattering, inelastic X-ray scattering and Compton scattering. Light scattering is one of the two major physical processes that contribute to the visible appearance of most objects, the other being absorption.