Search results
Results From The WOW.Com Content Network
Echolocation call produced by Pipistrellus pipistrellus, an FM bat. The ultrasonic call has been "heterodyned" – multiplied by a constant frequency to produce frequency subtraction, and thus an audible sound – by a bat detector. A key feature of the recording is the increase in the repetition rate of the call as the bat nears its target ...
Human echolocation is the ability of humans to detect objects in their environment by sensing echoes from those objects, by actively creating sounds: for example, by tapping their canes, lightly stomping their foot, snapping their fingers, or making clicking noises with their mouths.
The common noctule uses two main calls for echolocation. The frequencies of the first are 26–47 kHz, have most energy at 27 kHz and an average duration of 11.5ms. [23] The frequency of the second call is 22–33 kHz, having most energy at 22 kHz and an average duration of 13.8ms. [23] [24] Common noctule in the Seeburgpark near Konstanz (Germany)
Animal echolocation, non-human animals emitting sound waves and listening to the echo in order to locate objects or navigate. Human echolocation , the use of sound by people to navigate. Sonar ( so und n avigation a nd r anging), the use of sound on water or underwater, to navigate or to locate other watercraft, usually by submarines.
For example, most flying insect preys of bats developed sensitivity to echolocation call frequency. When stimulated by a high-pitched sound, moths engage in dodging flight pathway. Dolphins can also detect killer whales' ultrasonic clicks. In return, killer whales produce more irregular, isolated sonar clicks to make less conspicuous signals. [4]
When an echolocating bat approaches a target, its outgoing sounds return as echoes, which are Doppler shifted upward in frequency. In certain species of bats, which produce constant frequency (CF) echolocation calls, the bats compensate for the Doppler shift by changing their call frequency as they change speed towards a target.
Animal echolocation, animals emitting sound and listening to the echo in order to locate objects or navigate; Echo sounding, listening to the echo of sound pulses to measure the distance to the bottom of the sea, a special case of sonar; Gunfire locator; Human echolocation, the use of echolocation by blind people; Human bycatch
Additionally, echolocation allows the odontocete to easily discern the difference between objects that are different in material composition, even if visually identical, by their different densities. Individuals also appear to be able to isolate their own echoes during pod feeding activity without interference from other pod members' echolocations.