Search results
Results From The WOW.Com Content Network
Delta-v in feet per second, and fuel requirements for a typical Apollo Lunar Landing mission. In astrodynamics and aerospace, a delta-v budget is an estimate of the total change in velocity (delta-v) required for a space mission. It is calculated as the sum of the delta-v required to perform each propulsive maneuver needed during
Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
Dense propellant launch vehicles have a higher takeoff mass due to lower I sp, but can more easily develop high takeoff thrusts due to the reduced volume of engine components. This means that vehicles with dense-fueled booster stages reach orbit earlier, minimizing losses due to gravity drag and reducing the effective delta-v requirement.
The applied change in velocity of each maneuver is referred to as delta-v (). The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers.
The longer it can accelerate its own mass, the more delta-V it delivers to the whole system. In other words, given a particular engine and a mass of a particular propellant, specific impulse measures for how long a time that engine can exert a continuous force (thrust) until fully burning that mass of propellant.
The propellant mass fraction is the ratio of just the propellant to the entire mass of the vehicle at takeoff (propellant plus dry mass). In the cases of a single-stage-to-orbit (SSTO) vehicle or suborbital vehicle, the mass fraction equals the propellant mass fraction, which is simply the fuel mass divided by the mass of the full spaceship.
Delta-v budget – is an estimate of the total delta-v required for a space mission. It is calculated as the sum of the delta-v required for the propulsive maneuvers during the mission, and as input to the Tsiolkovsky rocket equation, determines how much propellant is required for a vehicle of given mass and propulsion system.