Search results
Results From The WOW.Com Content Network
A perfect square is an element of algebraic structure that is equal to the square of another element. ... Perfect square trinomials, a method of factoring polynomials
These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .
For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.
This page was last edited on 1 November 2008, at 06:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
For univariate polynomials over the rationals (or more generally over a field of characteristic zero), Yun's algorithm exploits this to efficiently factorize the polynomial into square-free factors, that is, factors that are not a multiple of a square, performing a sequence of GCD computations starting with gcd(f(x), f '(x)). To factorize the ...
The effect has been to fold up the u 4 term into a perfect square: (u 2 + a) 2. The second term, au 2 did not disappear, but its sign has changed and it has been moved to the right side. The next step is to insert a variable y into the perfect square on the left side of equation , and a corresponding 2y into the coefficient of u 2 in the
Animation depicting the process of completing the square. (Details, animated GIF version)In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1]