Ad
related to: torque tension chart pdf printable
Search results
Results From The WOW.Com Content Network
Similarly, an inch-pound (or pound-inch) is the torque of one pound of force applied to one inch of distance from the pivot, and is equal to 1 ⁄ 12 lbf⋅ft (0.1129848 N⋅m). It is commonly used on torque wrenches and torque screwdrivers for setting specific fastener tension.
torque-angle tightening (also known as torque-angle tension control) is a method of securing the bolted joint when the initial tension is critical for reliability and safety. The technique relies on simultaneous monitoring of both the torque applied during the tightening as well as the angle of rotation, usually using a torque/angle wrench.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
Torque charts are available to specify the required torque for a given fastener based on its property class (fineness of manufacture and fit) and grade (tensile strength). Spring Analogy for a Bolted Joint. When a fastener is tightened, a tension preload is develops in the bolt, while an equal compressive preload forms in the clamped parts.
The most common usage is to describe the load applied to a fastener as a result of its being installed, i.e., before any external loads are applied (e.g., tightening the nut on a bolt).
The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product.This makes it a pseudovector. = where is torque, r is radius, and is a cross product.
In physics and mechanics, torque is the rotational analogue of linear force. [1] It is also referred to as the moment of force (also abbreviated to moment). The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M.
The vector T may be regarded as the sum of two components: the normal stress (compression or tension) perpendicular to the surface, and the shear stress that is parallel to the surface. If the normal unit vector n of the surface (pointing from Q towards P ) is assumed fixed, the normal component can be expressed by a single number, the dot ...