Search results
Results From The WOW.Com Content Network
In algebraic geometry, a correspondence between algebraic varieties V and W is a subset R of V×W, that is closed in the Zariski topology. In set theory, a subset of a Cartesian product of two sets is called a binary relation or correspondence; thus, a correspondence here is a relation that is defined by algebraic equations.
In mathematics, injections, surjections, and bijections are classes of functions distinguished by the manner in which arguments (input expressions from the domain) and images (output expressions from the codomain) are related or mapped to each other. A function maps elements from its domain to elements in its codomain.
A bijection, bijective function, or one-to-one correspondence between two mathematical sets is a function such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain).
1. A canonical map is a map or morphism between objects that arises naturally from the definition or the construction of the objects being mapped against each other. 2. A canonical form of an object is some standard or universal way to express the object. correspondence
As a result, there is a one-to-one correspondence between the contractions of X and some of the faces of the nef cone of X. [15] (This correspondence can also be formulated dually, in terms of faces of the cone of curves.) Knowing which nef line bundles are semi-ample would determine which faces correspond to contractions.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...
The correspondence has the following useful properties. It is inclusion-reversing. The inclusion of subgroups H 1 ⊆ H 2 holds if and only if the inclusion of fields E H 1 ⊇ E H 2 holds. Degrees of extensions are related to orders of groups, in a manner consistent with the inclusion-reversing property.