Search results
Results From The WOW.Com Content Network
In statistics, the assumed mean is a method for calculating the arithmetic mean and standard deviation of a data set. It simplifies calculating accurate values by hand. Its interest today is chiefly historical but it can be used to quickly estimate these statistics.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be
where ¯ is the sample mean, s is the sample standard deviation and n is the sample size. The degrees of freedom used in this test are n − 1. Although the parent population does not need to be normally distributed, the distribution of the population of sample means ¯ is assumed to be normal.
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
In other words, for a normal distribution, mean absolute deviation is about 0.8 times the standard deviation. However, in-sample measurements deliver values of the ratio of mean average deviation / standard deviation for a given Gaussian sample n with the following bounds: w n ∈ [ 0 , 1 ] {\displaystyle w_{n}\in [0,1]} , with a bias for small n .