Search results
Results From The WOW.Com Content Network
Dispersive prisms are used to break up light into its constituent spectral colors because the refractive index depends on wavelength; the white light entering the prism is a mixture of different wavelengths, each of which gets bent slightly differently. Blue light is slowed more than red light and will therefore be bent more than red light.
A ray trace through a prism with apex angle α. Regions 0, 1, and 2 have indices of refraction, , and , and primed angles ′ indicate the ray's angle after refraction.. Ray angle deviation and dispersion through a prism can be determined by tracing a sample ray through the element and using Snell's law at each interface.
The prism causes the light to disperse and fan out into a rainbow-like spectrum. For each packet of white light entering the prism, a color-dispersed packet of light exits the prism. Because light travels slower in glass than in air, the packets necessarily bunch up inside the prism and only resume their normal speed (and spacing) after exiting.
The second prism should have an index of refraction higher than that of the liquid, so that light only enters the prism at angles smaller than the critical angle for total reflection. This angle can then be measured either by looking through a telescope, [clarification needed] or with a digital photodetector placed in the focal plane of a lens.
From Snell's law it can be seen that the angle of refraction of light in a prism depends on the refractive index of the prism material. Since that refractive index varies with wavelength, it follows that the angle that the light is refracted by will also vary with wavelength, causing an angular separation of the colors known as angular dispersion.
Schematic setup of an automatic refractometer: An LED light source is imaged under a wide range of angles onto a prism surface which is in contact with a sample. Depending on the difference in the refractive index between prism material and sample the light is partly transmitted or totally reflected.
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
The wedge prism is a prism with a shallow angle between its input and output surfaces. This angle is usually 3 degrees or less. Refraction at the surfaces causes the prism to deflect light by a fixed angle. When viewing a scene through such a prism, objects will appear to be offset by an amount that varies with their distance from the prism.