When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel classifiers were described as early as the 1960s, with the invention of the kernel perceptron. [3] They rose to great prominence with the popularity of the support-vector machine (SVM) in the 1990s, when the SVM was found to be competitive with neural networks on tasks such as handwriting recognition.

  3. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Kernel trick is also applicable when kernel based classifier is used, such as SVM. Pyramid match kernel is newly developed one based on the BoW model. The local feature approach of using BoW model representation learnt by machine learning classifiers with different kernels (e.g., EMD-kernel and kernel) has been vastly tested in the area of ...

  4. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  5. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...

  6. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.

  7. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  8. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.

  9. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    AdaTron uses the fact that the corresponding quadratic optimization problem is convex. The perceptron of optimal stability, together with the kernel trick, are the conceptual foundations of the support-vector machine. The -perceptron further used a pre-processing layer of fixed random weights, with thresholded output units.