When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for

  3. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    Such is the case for the partition function in quantum field theory. A common, useful modification to the partition function is to introduce auxiliary functions. This allows, for example, the partition function to be used as a generating function for correlation functions. This is discussed in greater detail below.

  4. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    A partition in which no part occurs more than once is called strict, or is said to be a partition into distinct parts. The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts.

  5. Category:Partition functions - Wikipedia

    en.wikipedia.org/wiki/Category:Partition_functions

    The partition function or configuration integral, as used in probability theory, information science and dynamical systems, is an abstraction of the definition of a partition function in statistical mechanics. In statistical mechanics, the partition function, Z, encodes the statistical properties of a system in thermodynamic equilibrium.

  6. Translational partition function - Wikipedia

    en.wikipedia.org/wiki/Translational_partition...

    In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]

  7. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    Z is the partition function, corresponding to the denominator in equation 1; m is the molecular mass of the gas; T is the thermodynamic temperature; k B is the Boltzmann constant. This distribution of N i : N is proportional to the probability density function f p for finding a molecule with these values of momentum components, so:

  8. Maxwell–Boltzmann statistics - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann_statistics

    What has been presented above is essentially a derivation of the canonical partition function. As one can see by comparing the definitions, the Boltzmann sum over states is equal to the canonical partition function. Exactly the same approach can be used to derive Fermi–Dirac and Bose–Einstein statistics.

  9. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    In number theory and combinatorics, a partition of a non-negative integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.)