When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  3. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    It gives the contact stress as a function of the normal contact force, the radii of curvature of both bodies and the modulus of elasticity of both bodies. Hertzian contact stress forms the foundation for the equations for load bearing capabilities and fatigue life in bearings, gears, and any other bodies where two surfaces are in contact.

  4. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]

  5. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    The normal convention used in most engineering applications is to label a positive shear force - one that spins an element clockwise (up on the left, and down on the right). Likewise the normal convention for a positive bending moment is to warp the element in a "u" shape manner (Clockwise on the left, and counterclockwise on the right).

  6. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  7. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...

  8. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    For simple unidirectional normal stresses all theories are equivalent, which means all theories will give the same result. Maximum shear stress theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing.

  9. Mohr–Coulomb theory - Wikipedia

    en.wikipedia.org/wiki/Mohr–Coulomb_theory

    Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.