Search results
Results From The WOW.Com Content Network
A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel . It usually has a high resistance so that it takes negligible current from the circuit.
An electrostatic voltmeter uses the attraction force between two charged surfaces to create a deflection of a pointer directly calibrated in volts. Since the attraction force is the same regardless of the polarity of the charged surfaces (as long as the charge is opposite), the electrostatic voltmeter can measure DC voltages of either polarity.
The file size of this SVG diagram may be irrationally large because its text has been converted to paths inhibiting translations. Licensing I, the copyright holder of this work, hereby publish it under the following license:
The electrochemical potential is the voltage that can be directly measured with a voltmeter. [13] [14] The Galvani potential that exists in structures with junctions of dissimilar materials is also work per charge but cannot be measured with a voltmeter in the external circuit (see § Galvani potential vs. electrochemical potential).
A circuit diagram (or: wiring diagram, electrical diagram, elementary diagram, electronic schematic) is a graphical representation of an electrical circuit. A pictorial circuit diagram uses simple images of components, while a schematic diagram shows the components and interconnections of the circuit using standardized symbolic representations.
A voltmeter is optional since the applied voltage is the same as the voltmeter reading. Now with the help of a variac, the applied voltage is slowly increased until the ammeter gives a reading equal to the rated current of the HV side. After reaching the rated current of the HV side, all three instruments reading (Voltmeter, Ammeter, and ...
Circuit diagram for open-circuit test. The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of ...
Consider the circuit diagram of Anderson's bridge in the given figure. Let L 1 be the self-inductance and R 1 be the electrical resistance of the coil under consideration. Since the voltmeter is ideally assumed to have nearly infinite impedance, the currents in branches ab and bc and those in the branches de and ec are taken to be equal.