When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    The angle between any two bonds is the tetrahedral bond angle of 109°28' [3] (around 109.5°). Pauling supposed that in the presence of four hydrogen atoms, the s and p orbitals form four equivalent combinations which he called hybrid orbitals. Each hybrid is denoted sp 3 to indicate its composition, and is directed along one of the four C–H ...

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    A bond angle is the angle formed between three atoms across at least two bonds. For four atoms bonded together in a chain, the torsional angle is the angle between the plane formed by the first three atoms and the plane formed by the last three atoms. There exists a mathematical relationship among the bond angles for one central atom and four ...

  4. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    A bond of higher bond order also exerts greater repulsion since the pi bond electrons contribute. [10] For example in isobutylene, (H 3 C) 2 C=CH 2, the H 3 C−C=C angle (124°) is larger than the H 3 C−C−CH 3 angle (111.5°). However, in the carbonate ion, CO 2− 3, all three C−O bonds are equivalent with angles of 120° due to resonance.

  5. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.

  6. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  7. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    Only bonding with 4 equivalent substituents results in exactly sp 3 hybridization. For molecules with different substituents, we can use isovalent hybridization to rationalize the differences in bond angles between different atoms. In the molecule methyl fluoride for example, the HCF bond angle (108.73°) is less than the HCH bond angle (110.2 ...

  8. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Shape of water molecule showing that the real bond angle 104.5° deviates from the ideal sp 3 angle of 109.5°.. In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents.

  9. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with the true bond angle of 104.45°. The difference between the predicted bond angle and the measured bond angle is traditionally explained by the electron repulsion of the two lone pairs occupying two sp 3 hybridized orbitals.