Search results
Results From The WOW.Com Content Network
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
Description: Extensive exposition of statistical decision theory, statistics, and decision analysis from a Bayesian standpoint. Many examples and problems come from business and economics. Importance: Greatly extended the scope of applied Bayesian statistics by using conjugate priors for exponential families. Extensive treatment of sequential ...
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Although probability and statistics was once paired together as a single subject, they are conceptually distinct from one another. The former is based on deducing answers to specific situations from a general theory of probability, meanwhile statistics induces statements about a population based on a data set.
Communications in Statistics is a peer-reviewed scientific journal that publishes papers related to statistics. It is published by Taylor & Francis in three series, Theory and Methods , Simulation and Computation , and Case Studies, Data Analysis and Applications .
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...
Mathematical statistics is the application of probability theory and other mathematical concepts to statistics, as opposed to techniques for collecting statistical data. [1] Specific mathematical techniques that are commonly used in statistics include mathematical analysis , linear algebra , stochastic analysis , differential equations , and ...