Ad
related to: stable vs unstable equilibrium physics calculator
Search results
Results From The WOW.Com Content Network
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
The potential energy is at a local maximum, which means that the system is in an unstable equilibrium state. If the system is displaced an arbitrarily small distance from the equilibrium state, the forces of the system cause it to move even farther away. Diagram of a ball placed in a stable equilibrium. Second derivative > 0
An equilibrium point is hyperbolic if none of the eigenvalues have zero real part. If all eigenvalues have negative real parts, the point is stable. If at least one has a positive real part, the point is unstable.
A typical example of a differential equation with a saddle-node bifurcation is: = +. Here is the state variable and is the bifurcation parameter.. If < there are two equilibrium points, a stable equilibrium point at and an unstable one at +.
An attractor is a stable point which is also called a "sink". The repeller is considered as an unstable point, which is also known as a "source". A phase portrait graph of a dynamical system depicts the system's trajectories (with arrows) and stable steady states (with dots) and unstable steady states (with circles) in a phase space.
A circular orbit may be either stable or unstable. If it is unstable, a small perturbation could destabilize the orbit, but a stable orbit would return to equilibrium. To determine the stability of a circular orbit, determine the concavity of the effective potential.
Many, but not all, biochemical pathways evolve to stable, steady states. As a result, the steady state represents an important reference state to study. This is also related to the concept of homeostasis, however, in biochemistry, a steady state can be stable or unstable such as in the case of sustained oscillations or bistable behavior.
In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if x e {\displaystyle x_{e}} is Lyapunov stable and all solutions that start out near x e {\displaystyle x_{e}} converge to x e {\displaystyle x_{e}} , then x e {\displaystyle x_{e}} is said to be asymptotically ...