When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    For example, all trees on n vertices have the same chromatic polynomial. In particular, ( x − 1 ) 3 x {\displaystyle (x-1)^{3}x} is the chromatic polynomial of both the claw graph and the path graph on 4 vertices.

  3. Deletion–contraction formula - Wikipedia

    en.wikipedia.org/wiki/Deletion–contraction_formula

    R. M. Foster had already observed that the chromatic polynomial is one such function, and Tutte began to discover more, including a function f = t(G) counting the number of spanning trees of a graph (also see Kirchhoff's theorem).

  4. Wheel graph - Wikipedia

    en.wikipedia.org/wiki/Wheel_graph

    For odd values of n, W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, W n has chromatic number 4, and (when n ≥ 6) is not perfect. W 7 is the only wheel graph that is a unit distance graph in the Euclidean plane. [4]

  5. Chromatic symmetric function - Wikipedia

    en.wikipedia.org/wiki/Chromatic_symmetric_function

    The chromatic symmetric function is a symmetric function invariant of graphs studied in algebraic graph theory, a branch of mathematics. It is the weight generating function for proper graph colorings , and was originally introduced by Richard Stanley as a generalization of the chromatic polynomial of a graph.

  6. Algebraic graph theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_graph_theory

    Finally, the third branch of algebraic graph theory concerns algebraic properties of invariants of graphs, and especially the chromatic polynomial, the Tutte polynomial and knot invariants. The chromatic polynomial of a graph, for example, counts the number of its proper vertex colorings .

  7. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    As the name indicates, for a given G the function is indeed a polynomial in t. For the example graph, P(G, t) = t(t − 1) 2 (t − 2), and indeed P(G, 4) = 72. The chromatic polynomial includes more information about the colorability of G than does the chromatic number.

  8. Mixed graph - Wikipedia

    en.wikipedia.org/wiki/Mixed_graph

    If such a k-coloring exists, then we refer to the smallest k needed in order to properly color our graph as the chromatic number, denoted by χ(G). [2] The number of proper k -colorings is a polynomial function of k called the chromatic polynomial of our graph G (by analogy with the chromatic polynomial of undirected graphs) and can be denoted ...

  9. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    For example, if the events are independent and ... A well known application of the principle is the construction of the chromatic polynomial of a graph. [12]