Search results
Results From The WOW.Com Content Network
The scope of the function name is limited to the let expression structure. In mathematics, the let expression defines a condition, which is a constraint on the expression. The syntax may also support the declaration of existentially quantified variables local to the let expression. The terminology, syntax and semantics vary from language to ...
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
The preferences here can be represented by cardinal utility functions which take several variables (the attributes). [ 1 ] : 26–27 Such functions are the focus of the current article. The goal is to calculate a utility function u ( x 1 , . . . , x n ) {\displaystyle u(x_{1},...,x_{n})} which represents the person's preferences on lotteries of ...
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...
In numerical analysis, multivariate interpolation or multidimensional interpolation is interpolation on multivariate functions, having more than one variable or defined over a multi-dimensional domain. [1] A common special case is bivariate interpolation or two-dimensional interpolation, based on two variables or two dimensions.
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.
The sequence of functions f n is called a Picard sequence, [8] [9] named after Charles Émile Picard. For a given x in X, the sequence of values f n (x) is called the orbit of x. If f n (x) = f n+m (x) for some integer m > 0, the orbit is called a periodic orbit. The smallest such value of m for a given x is called the period of the orbit.
Let z 0 be a root of a holomorphic function f, and let n be the least positive integer such that the n th derivative of f evaluated at z 0 differs from zero. Then the power series of f about z 0 begins with the n th term, and f is said to have a root of multiplicity (or “order”) n. If n = 1, the root is called a simple root. [4]